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Cruickshank's (1956b) treatment of molecular rigid-body 
vibrations has been extended by Pawley (1964) to permit 
the direct least-squares refinement of the molecular trans- 
lation and libration tensors T and to from the diffraction 
data without prior evaluation of the atomic vibration ten- 
sots U. Pawley's equations, while applicable to any crystal 
system, require that T and to be referred to orthogonal co- 
ordinate axes. Transformation to such an axial system may 
often be instructive for the interpretation of the results but 
its introduction in the refinement equations seems needless- 
ly cumbersome. The relevant considerations are most con- 
veniently stated in tensor notation (see, e.g. Patterson, 
1959). 

The symmetric tensor U specifying an atom's harmonic 
vibration amplitudes manifests itself in diffraction measure- 
ments by way of the temperature factor 

q(s) = exp -- 2~z2st U~sj (1) 

(Cruickshank, 1956a), where s=  [sl s2 s3] is the reciprocal- 
lattice vector. Since s is generally defined by its covariant 
components h, k, I with respect to the crystal axes at meas- 
urement of q(s) naturally leads to a determination of the 
contravariant components UO" of U in this same axial 
system. In Cruickshank's notation these are (1 + 3,j)bij/4rc2. 
Cruickshank, however, implicitly introduces a set of dimen- 
sionless (though not generally unit-length) axes 

~te = atA~,, 

where at are the crystal axes and [A~] is the diagonal matrix 

[o, 0 0] 
[A~]= 0 b* . 

0 0 c* 

These axes ~e are reciprocal to the unit reciprocal vectors 
fit = fi,, ~ , ,  ~,. It is in this coordinate system that the vibr- 
ation tensor has the contravariant components designated 
by Cruickshank (1956a) as Utj (but in tensor notation prop- 
erly written Ut0. This axial system has the virtue of giving 
the mean square vibration amplitude in the direction of a 
unit vector ] the simple expression 

u2"~ = l~ Utile, 

where h are the covariant components of] ,  i.e. 

i=z,~t. 
In particular, the diagonal components U" are just the 

mean square displacements parallel to the reciprocal axes 
a ~. In this coordinate system the reciprocal-lattice coordin- 
ates st appearing in (1) are 

st = ha*, kb*, lc* . 

For a rigid molecule undergoing small harmonic trans- 
lational and librational oscillations, Cruickshank (1956b) 
has given the relation between the atomic vibration tensors 
U and the molecular tensors T and to when all are referred 
to an orthonormal coordinate system. His equations (2,3) 
have the matrix formulation 

[U] = [T] + [R] [o9] [R], (2) 

in which, for an atom at position r= [2av ]  relative to the 
center of molecular libration, [R] is the antisymmetric 
matrix [0v  1 

[RI = v 0 - 2 . 

- a  2 0 

We can convert equation (2) into a tensor equation, valid 
in any coordinate system, by writing, for example, 

U tj = T ~j + Rt~og~R ~ , (3) 

which contains the contravariant components of U and T 
and the covariant components of to. To obtain R te from 
the components of r we first introduce the metric tensor 
Gtj= a~. aj (if we are working in the crystal axial system 
at; otherwise the appropriate metric tensor is defined anal- 
ogously). Letting g represent the determinant of the matrix 
[G~j], we define 

I 0 -- 23 22 
[RtJ]=g -~ 23 0 -21 ; 

-- 22 ,~,1 0 

in this expression 2e=2*Gte are the covariant components 
of r, whose eontravariant components are 2 t = x t - U, where 
x * and ~* are, respectively, the ordinary contravariant co- 
ordinates of the atom and of the libration center. 

Equation (3) can be readily differentiated with respect to 
the rigid-body parameters TtJ, og,j, and U to permit the 
least-squares derivation of these parameters from the prev- 
iously obtained atomic U *j. (Note that for k # l  we must 
add the derivatives with respect to og~z and cote since these 
are a single variable). Such a treatment, taking explicit ac- 
count of the covariance matrix of the several components 
U ti of each atom, as estimated during the prior refinement 
of the structural parameters from the diffraction data, has 
been programmed in F O R T R A N  and successfully run on 
a Control Data Corporation 1604A computer. 

As an alternative to this two-stage procedure, we can 
substitute equation (3) into (1) and this into the standard 
formula for the structure factor F, thereby obtaining an ex- 
pression analogous to Pawley's equation (1) but lacking his 
transformation matrix [A-q that converts from orthonor- 
mal to crystal axes. This expression, 

F(s) = c Z f e x p  (2nis~xO exp [ -  2n2s~(TO + R~oge~R~t)st], 
atom 

can be differentiated with respect to the rigid-body param- 
eters, allowing these to be refined directly from the diffrac- 
t ion data. In fact this simply means evaluating derivatives 
of F(s) with respect to the several U tJ and from these, via 
multiplication by the derivatives of equation (3) and sum- 
mation, obtaining the derivatives of F(s) with respect to the 
rigid-body parameters. This one-stage procedure has been 
embodied in a F O R T R A N  least-squares program that  
allows some or all of the atoms in the asymmetric unit to 
be regarded as constituting one or more rigid units, while 
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others may be allowed to vibrate independently. The T and 
e~ tensors of the several rigid units are refined directly, as 
in Pawley's method, along with the usual coordinates, 
occupancy factors, etc. Experience suggests that this one- 
stage procedure may be highly advantageous, especially in 
rate of convergence, provided the molecules are sufficiently 
rigid and the f curves used (for X-ray data) represent the 
stationary-atom electron densities to the required accuracy. 
When these conditions are not  met, the two-stage proced- 
ure, or a comparison of the two, may help to reveal in- 
adequacies of the model, due to internal vibrations, charge 
polarization, altered hybridization, etc., more readily than 
extensive difference syntheses. 

The tensor formulation is also useful for evaluation of 
the libration corrections to the atomic coordinates. Assum- 
ing for simplicity that our refinement procedure has located 
the centroids of the atomic peaks rather than their maxima 
(either assumption is an approximation requiring justific- 
ation in particular circumstances), we may, for the present 
argument, disregard the factor D(a(o) in Cruickshank's 
(1961) equation (6) and obtain from his equations (10) the 
matrix equation for the coordinate shifts, in an orthonormal 
system, 

- [qeue v] = ½{t [;tUv] - [2/zv][~] }, 

where t is the trace of [co]. The tensor analog of this equ- 
ation, valid in any coordinate system, gives the corrected 
atomic coordinates 

2 ~ - ~ = ( 1 + ½t)2k _ ½~o~. 

Here, 2 k are the uncorrected coordinates, measured from 
the center of libration; the mixed covariant-contravariant 
components of m may be evaluated as 

o~' = couG Jk , 

where the matrix [GJ k] is inverse to [Gu]; and the trace 

t=27 coti 
i 

is invariant under all coordinate transformations. 
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In this paper a table of symmetry restrictions on aniso- 
tropic temperature factor parameters for all special posi- 
tions of the 230 space groups is presented. The text explains 
the table and describes the computer program which was 
used to derive it. The relationships between the various re- 
stricted forms are displayed diagrammatically. No recom- 
mendations for the method of programming these restric- 
tions in least-squares refinement are included. 
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Fig. 1. Symmetry-imposed t-restrictions for all special positions. 

The anisotropic atomic temperature factor may be defin- 
3 3 

ed as exp [ -  ( 27 27 h~hjPu)]. The Pu are the 9 contravariant 
i = l j = l  

components of a symmetric second-order tensor (Levy, 
1956), while h, is the i th  index of a reflexion hkl. Terms with 
i -¢:j may be combined two by two: h,hjflu + hjh,flj, = 2h,hjflu, 

Table 1. The 18 p-restrictions that occur when only the first 
atom o f  an equivalent set given by Vol. I o f  International 

Tables is considered 
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